Fire and Life Safety Reports (FLSRs) Policy

Background and Policy Statement
Fire and Life Safety Reports (FLSRs) have been required by the city of Phoenix for a number of years now. And until now, the city had no specific criteria as to format and content of the report. As a result, a lack of consistency in reports submitted to the city has resulted in increased staff time to review, confusion regarding what life safety features and systems are required for a given facility, and ambiguity on system testing requirements prior to COFO and ongoing during the life of the facility.

To simplify FLSRs for everyone, starting with Phoenix adoption of the 2012 International Codes published by the International Code Council (ICC) effective July 1, 2013, the city of Phoenix, by policy as stated herein, mandates the use of all necessary portions of NFPA 3, Recommended Practice for Commissioning and Integrated Testing of Fire Protection and Life Safety Systems, 2012 Edition in the development of FLSRs required by the PBCC.

NFPA 3 shall be used to identify and explain all life safety and fire protection systems; existing, new, passive and active, and shall be used to identify team members and their respective roles in the design and installation of equipment and systems covered by NFPA 3.

The attached standard format titled Fire and Life Safety Report Checklist (the Checklist) is based on NFPA 3 and shall be used for creating each FLSR. All FLSRs must be sealed by an Arizona registrant.

Purpose
While the city has not formally adopted NFPA 3, it was chosen as the basis for FLSRs because it offers a comprehensive, nationally recognized standard format structured to fit the criteria required for FLSRs. Its use yields consistent and ongoing records for all life safety equipment and systems throughout the life of facilities located in Phoenix. Those who wish to use NFPA 3 in its entirety are encouraged to do so. However, only the portions of the document needed to identify team members and their roles, and to document all life safety and fire protection systems as stated herein, are required to be used. The FLSR is a living document that shall be maintained by the owner and updated, at the owner’s expense, as needed for city plan review and inspection purposes.
Required Contents of FLSRs

Format:
FLSRs shall include all the applicable information and data found in the Checklist\(^1\) attached. The Checklist contains 4 categories, each with numbered sections. FLSRs shall conform to this format; all categories and numbered sections shall appear in the FLSR. Sections that do not apply to a particular facility shall be designated “not applicable” or otherwise identified as not used at that particular facility.

Smoke Control:

Retro-commissioning:
The 2012 edition of NFPA 3 is the inaugural edition of the Practice, so all existing equipment and systems are to be included in FLSRs for remodels and additions to existing facilities. **Retro-commissioning**\(^3\) is required for existing equipment and systems intended to remain in operation at the facility. Proposed removal of equipment and systems from existing facilities shall also be documented in the FLSR.

Conflicts:
Where a conflict between NFPA 3 and the city of Phoenix adopted codes may occur, other than those identified herein, contact your team leader. The city of Phoenix will make a final determination.

\(^1\) *Fire and Life Safety Report Checklist*, developed by city of Phoenix Planning & Development Department staff, July 2013.

\(^2\) 2012 International Building Code and 2012 International Fire Code, Chapters 35 and 80, respectively.

\(^3\) Per NFPA 3, Section 3.3.3.8*, “Retro-commissioning is the process of commissioning existing fire protection and life safety systems that were not commissioned when originally installed.” And, per NFPA A.3.3.3.8, “Retro-commissioning is a process that ensures that building systems perform interactively according to the design intent and/or to meet the owner’s current operational needs. This is achieved by documenting the design intent where possible and the current operational needs, measuring the existing performance, and implementing necessary operational and/or system modifications, followed by actual verification of performance, verification of O&M documentation, and training of operating personnel.”